jueves, 26 de octubre de 2017

Algunas aclaraciones sobre la radiación cósmica de fondo


En 1948, Ralph Alpher y Robert Herman, del equipo de George Gamow, llegaron a la conclusión de que, si el universo hubiese salido de un Big Bang y se hubiese expandido desde entonces, debería existir una radiación cósmica de fondo en la zona de frecuencia de las microondas (o lo que es lo mismo, a una temperatura de unos 5K, 5 grados por encima del cero absoluto). Alpher y Gamow habían publicado ese mismo año otra predicción, la de la composición media del cosmos partiendo de la teoría del Big Bang.
En 1964, Arno Penzias y Robert Wilson estaban trabajando con un radiotelescopio muy potente de nueva construcción y detectaron un ruido de fondo que no conseguían eliminar. Primero pensaron que sería de origen terrestre, pero una vez eliminadas todas las fuentes de ruido posibles, el efecto persistía. Después llegaron a la conclusión de que dicho ruido no podía proceder del sistema solar ni de nuestra galaxia (pues en tal caso sería más intenso en una dirección que en otra), y que su origen tenía que ser cósmico. La temperatura de esa radiación (o sea, su frecuencia, teniendo en cuenta la ecuación de Wien) resultó ser de 3K. Robert Burke, del MIT, sugirió a Penzias que dicho ruido podía ser la radiación cósmica de fondo predicha por Alpher y Herman, cosa que, en efecto, se comprobó. Por este descubrimiento, Penzias y Wilson recibieron el Premio Nobel en 1978.
Junto con el argumento basado en la composición media del universo, la radiación cósmica de fondo dio el espaldarazo a la teoría del Big Bang, que se convirtió en la teoría cosmológica estándar (aunque véase un artículo anterior de este blog al respecto).

jueves, 19 de octubre de 2017

Partículas virtuales

The same post in English


Werner Heisenberg
El principio de incertidumbre de Heisenberg, una de las consecuencias de la mecánica cuántica, hace posible la aparición de partículas virtuales en el vacío, que aparentemente transgreden el principio de conservación de la energía, el más sacrosanto de la física. Esto se debe a que el principio de incertidumbre puede expresarse de varias formas, una de las cuales relaciona la incertidumbre en la energía con la incertidumbre en el tiempo:
DE.Dt≥ħ/2
Esta expresión se puede interpretar en el sentido de que un par de objetos, cada uno de ellos con energía E, puede aparecer espontáneamente a partir del vacío, siempre que dure como mucho un tiempo Dt<ħ/(2E). Estos pares de objetos se llaman partículas virtuales. Una de esas partículas es siempre materia, la otra antimateria, y su duración, de acuerdo con este principio, es ridículamente pequeña. Un electrón virtual, por ejemplo, duraría 1,3×10-21 segundos (poco más de una miltrillonésima de segundo). Cuanta más masa (energía) tenga la partícula virtual, menos tiempo durará. Al cabo de ese tiempo, las dos partículas se aniquilarán mutuamente y desaparecerán. Debido a su corta duración, la existencia de las partículas virtuales no ha podido comprobarse experimentalmente.
¿Es posible que estas partículas virtuales se conviertan en reales bajo determinadas circunstancias? Pues sí lo es, y se cree que hay por lo menos dos situaciones (algo drásticas, es cierto) en las que esto podría realizarse.

jueves, 12 de octubre de 2017

¿Está perdiendo la física el contacto con la realidad?


En su famoso libro póstumo The discarded image, publicado en 1964, unos meses después de su muerte, C.S.Lewis se adelanta a su tiempo y predice una situación que hoy día, en la ciencia física, se ha convertido en algo usual, y que no augura nada bueno para el porvenir de esta ciencia. Veamos una cita pertinente:
Las matemáticas son ahora lo más cercano a la realidad que podemos obtener. Cualquier cosa imaginable, incluso cualquier cosa que pueda ser manipulada por concepciones ordinarias (es decir, no matemáticas), lejos de ser una verdad más a la que nos llevaron las matemáticas, es una mera analogía, una concesión a nuestra debilidad. Sin parábolas, la física moderna no habla a las multitudes. Incluso entre ellos, cuando tratan de verbalizar sus hallazgos, los científicos empiezan a hablar de esto como "hacer modelos"... A veces [los modelos] ilustran este o aquel aspecto de [la realidad] mediante una analogía. A veces no ilustran, sino que simplemente sugieren, al igual que los dichos de los místicos... Al aceptar [una expresión como] la "curvatura del espacio" no estamos "conociendo" o disfrutando de la "verdad" de la manera que en otro tiempo creímos posible.

jueves, 5 de octubre de 2017

Problemas científicos en el Planeta de los Simios


En 1963, el escritor francés Pierre Boulle publicó una novela famosa de ciencia-ficción con el título El Planeta de los Simios, que en 1968 fue adaptada al cine por primera vez, con Charlton Heston en el papel del protagonista y guión de Michael Wilson y Rod Serling, famoso por la serie de televisión Dimensión Desconocida. Una década antes, Boulle había publicado otro best-seller, también adaptado con éxito al cine: El Puente sobre el Río Kwai.
La novela de Boulle cuenta la historia de tres astronautas que emprenden un viaje de dos años (medidos en tiempo propio relativista) hasta un planeta que gira alrededor de Betelgeuse (la estrella alfa de la constelación de Orión) y encuentran allí una civilización extraterrestre a un nivel parecido al nuestro a mediados del siglo XX, en la que los seres inteligentes son tres especies de simios (idénticos a los gorilas, chimpancés y orangutanes terrestres) mientras los seres humanos (también idénticos a nosotros) son animales desprovistos de razón. Como es lógico, el terrestre superviviente se enfrenta a grandes dificultades para convencer a los simios de que él es un ser inteligente.