Geoffrey West |
El libro Scale: The universal laws of life and death in organisms, cities and companies, de Geoffrey West, del Instituto de Santa Fe, del que hablé en el artículo anterior, sostiene que las ciudades y las empresas están sometidas a leyes muy semejantes a las que se aplican a los seres vivos. Se trata, además, de leyes generales, que se aplican a todas las entidades de esos tipos, independientemente de su origen. West lo explica así:
Sorprendentemente, los análisis de dichos datos muestran que, en función del tamaño de la población, la infraestructura de la ciudad (la longitud de las carreteras, los cables eléctricos, las tuberías de agua y el número de gasolineras) aumenta de la misma manera, ya sea en Estados Unidos, China, Japón, Europa o América Latina. Como en biología, estas cantidades aumentan de forma sublineal con el tamaño, lo que indica una economía de escala sistemática, pero con un exponente aproximadamente igual a 0,85 en lugar de 0,75… [S]e necesitan menos carreteras y cables eléctricos per cápita cuanto más grande es la ciudad. Al igual que los organismos, las ciudades son de hecho versiones aproximadamente a escala unas de otras, a pesar de sus diferentes historias, geografías y culturas, al menos en lo que respecta a su infraestructura física.
Como
en el caso del aparato circulatorio de los seres vivos, en las ciudades existen
estructuras parecidas, que deben proporcionar agua, electricidad, gas y comunicaciones
a todas y cada una de las viviendas de la ciudad. Por eso no es de extrañar que
el efecto sea también el de una economía de escala, aunque
con exponente 0,85 en lugar de 0,75. West no explica la razón de esta
diferencia, ni por qué, en el caso de las empresas, el exponente resulta ser un
poco mayor: aproximadamente igual a 0,90. Es curioso que el exponente 0,85 se
aplique también aproximadamente a cuestiones como el número de gasolineras que
hay en cada ciudad en función del número de habitantes, con pendientes muy
parecidas cualquiera sea el país de que se trate, como se ve en la figura 33
del libro de West, que muestro a continuación:
En
cambio, otras particularidades asociadas a las ciudades se ajustan a un
exponente diferente, aproximadamente igual a 1,15, como en el caso del número
de patentes en función del número de habitantes de la ciudad de la figura 3 del
libro:
West
comenta al respecto:
Magnitudes
socioeconómicas como los salarios, la riqueza, las patentes, los casos de SIDA,
la delincuencia y las instituciones educativas, que no tienen analogía en
biología y no existían en el planeta antes de que los humanos inventaran las
ciudades hace diez mil años, también escalan con el tamaño de la población pero
con una relación super-lineal, es decir, con un exponente mayor que uno, aproximadamente
igual a 1,15. Un ejemplo de esto es el número de patentes producidas en una
ciudad que se muestra en la Figura 3. Así, per cápita, todas estas cantidades
aumentan sistemáticamente en la misma medida que aumenta el tamaño de la ciudad
y, al mismo tiempo, hay ahorros equivalentes que provienen de las economías de
escala en las magnitudes de infraestructura. A pesar de su asombrosa diversidad
y complejidad en todo el mundo, y a pesar de la planificación urbana
localizada, las ciudades manifiestan una sorprendente simplicidad, regularidad
y previsibilidad.
El
problema de un exponente mayor que 1 es que da lugar a un crecimiento super-exponencial, que tiende a infinito en un tiempo finito. Los
partidarios de la singularidad tecnológica (véase este
artículo) saltarán de gozo ante esta posibilidad, pero West es más comedido
y dice esto:
Esto es
obviamente imposible, por lo que algo tiene que cambiar… Este tipo de crecimiento
es claramente insostenible, porque mantenerlo exige un suministro ilimitado,
cada vez mayor, y finalmente infinito de energía y recursos, en un momento
finito del futuro. Si no se controla, la teoría predice que se desencadena una
transición a una fase que conduce al estancamiento, y finalmente al colapso.
Esta
previsión parece mucho más realista que las elucubraciones enloquecidas de los
partidarios de la singularidad tecnológica. Es curioso que la curva que ofrece
West para describir esta situación sea prácticamente idéntica a la que yo propuse,
para describir la evolución de las especies biológicas y las civilizaciones, en
mis dos libros, Human
cultures and evolution (1978) y Evolución
biológica y cultural en la historia de la vida y del hombre (2017).
Hilo Temático sobre Matemáticas y Estadística: Anterior Siguiente
Manuel Alfonseca
Animo a los seguidores de este blog interesados en la evolución de las organizaciones humanas que lean los libros de Manuel Alfonseca citados: Human cultures and evolution (1978) y Evolución biológica y cultural en la historia de la vida y del hombre (2017). El primero de ellos me fue particularmente revelador y útil para mi trabajo como divulgador ante dirigentes de organismos públicos y empresas privadas y consultor de alta dirección. Y, como telón de fondo de estas sugerentes aportaciones de Manuel, la obra cumbre de Arnold J. Toynbee "Estudio de la Historia".
ResponderEliminarEl libro Human cultures and evolution está agotado en origen, pero a mí me quedan ejemplares. Si alguien lo quiere, puede dirigirse a mi correo electrónico.
Eliminar